Supporting Information for

Tuning the sharing modes and composition in a tetrahedral GeX₂ (X=S, Se) system via one-dimensional confinement

Yangjin Lee^{1,2,3,4,†}, Young Woo Choi^{1,2,†}, Kihyun Lee^{3,4}, Chengyu Song⁵, Peter Ercius⁵, Marvin L. Cohen^{1,2}, Kwanpyo Kim^{3,4,*}, and Alex Zettl^{1,2,6,*}

¹Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.

²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

³Department of Physics, Yonsei University, Seoul 03722, Korea.

⁴Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Korea.

⁵National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National

Laboratory, Berkeley, California 94720 United States.

⁶Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley,

California 94720, United States.

† These authors contributed equally to this work.

*Address correspondence to K.K. (kpkim@yonsei.ac.kr) and A.Z. (azettl@berkeley.edu)

Supporting Figure S1. Crystal structure of bulk GeX₂ (X= S, Se).

Supporting Figure S2. GeSe² **inside a nanotube.** EDS spectrum showing Ge and Se L- and Kedge peaks (Cu signals are from the TEM grid). The quantification based on the Ge and Se Kedges yields an atomic ratio of approximately 1 Ge:2 Se.

Supporting Figure S3. Type-1 1D GeS₂ chain inside a nanotube. (a) Low-magnification STEM image of GeS₂ inside nanotubes and EDS spectrum. The quantification based on Ge and S yields an atomic ratio of approximately 1 Ge:2 S. (b) Atomic-resolution image of the type-1 1D GeS₂ chain inside a nanotube.

Supporting Figure S4. Simulated STEM images of type-1 GeSe₂ and GeS₂ with various rotation angles. Scale bar: 0.5 nm.

Supporting Figure S5. Sequential atomic-resolution STEM images of a type-1 1D GeSe₂ chain inside a nanotube. The 0° initial chain is in blue, and the 45° rotated chain is in red, with a color overlay to help distinguish the two.

Supporting Figure S6. STEM image simulation of type-2 1D GeSe₂ and GeS₂ chains with various rotation angles. Scale bar: 0.5 nm.

Supporting Figure S7. Calculated cohesive energy per formula unit of bulk, type-1, and type-2 GeX₂ (S, Se, Te) chain structures. The cohesive energy is calculated as $E_{coh} = E_{Ge} + 2 * E_X - E_{GeX_2}$, where E_{Ge} and E_X are the total energies of a single Ge atom and a single X atom, respectively, and E_{GeX_2} is the total energy per formula unit of the isolated chain.

Supporting Figure S8. Occurrences of the different nanostructures as a function of the nanotube diameter for (a) GeS₂ and (b) GeSe₂.

Supporting Figure S9. Calculated binding energy per formula unit of GeS₂ and GeSe₂. The binding energy is calculated as $E_b = E_{\text{GeX}_2} + E_{\text{CNT}} - E_{\text{GeX}_2+\text{CNT}}$, where E_{GeX_2} , E_{CNT} , and $E_{\text{GeX}_2+\text{CNT}}$ are the total energies of the isolated GeX₂ chain, isolated CNT, and combined system, respectively.

Supporting Figure S10. Type-1 1D GeSe₂ chains inside double-walled and multiwalled nanotubes.

Supporting Figure S11. Type-1 GeSe₂ double chain inside a nanotube.

Type-2 multiple chains

Supporting Figure S12. Multiple type-2 GeSe₂ chains inside a nanotube.

Supporting Figure S13. 1D single atomic chain inside a narrow nanotube (~0.9 nm) and amorphous structure inside wide nanotubes.

Supporting Figure S14. Calculated electronic structures of isolated single-chain GeX₂ (**X=S, Se, Te).** Band structure and PDOS for isolated single-chain (a) type-1 GeS₂, (b) type-2 GeS₂, (c) type-1 GeSe₂, (d) type-2 GeSe₂, (e) type-1 GeTe₂, and (f) type-2 GeTe₂. The Fermi level is set to zero energy and marked with a horizontal dashed line.

Supporting Figure S15. Atomic-resolution image of a type-1 1D S-rich GeS_{2(1-x)}Se_{2x} chain inside a nanotube. (a) EDS spectrum of the 1D S-rich GeS_{2(1-x)}Se_{2x} chain. The quantification based on Ge, S, and Se yields an atomic ratio of approximately 1 Ge:1.4 S: 0.6 Se. (b) Atomic-resolution image of the 1D S-rich GeS_{2(1-x)}Se_{2x} chain inside a nanotube. Se atom positions are marked by yellow arrows.

Supporting Figure S16. Atomic-resolution image of a type-1 1D Se-rich $GeS_{2(1-x)}Se_{2x}$ chain inside a nanotube. (a) EDS spectrum of the 1D Se-rich $GeS_{2(1-x)}Se_{2x}$ chain. The quantification based on Ge, S, and Se yields an atomic ratio of approximately 1 Ge:0.8 S: 1.2 Se. (b) Atomic-resolution image of the 1D Se-rich $GeS_{2(1-x)}Se_{2x}$ chain inside a nanotube. S atom positions are marked by white arrows.

Supporting Figure S17. Simulated STEM images of a type-1 1D GeS_{2(1-x)}Se_{2x} chain inside a nanotube. Two different atomic models with x=0.5 were used for the simulations. Scale bar: 0.5 nm.